

www.nipponsteel.com

NIPPON STEEL

Titanium Products for Building Construction

- Illustrated Brochure -

NIPPON STEEL CORPORATION

2-6-1 Marunouchi, Chiyoda-ku,Tokyo 100-8071 Japan Tel: +81-3-6867-4111

Titanium Products for Building Construction - Illustrated Brochure -T006en_01_201904f © 2019 NIPPON STEEL CORPORATION

NIPPON STEEL CORPORATION

CONTENTS

Introduction	
2	National Centre for Performing Arts
3	Hangzhou Grand Theatre
4	Hefei Lakeside International & Convention Center
5	Taipei Arena
6	Hotel Marques de Riscal
7	Saemangeum Exhibition Center
9 Tolaro Dia Sito	
8	Pollous Observation Doom of Fuii
9	Television Headquarters
10	Shimane Prefectural Art Museum
11	Uchinada Town Office
12	Aquarium Dome in Nagoya Port
13	JR Hakodate Station
14	Kyushu National Museum
15	Nara National Museum (No. 2 Annex)
16	Tokyo National Museum (Heisei Hall)
17	Showa Hall
18	Oita Sports Park Stadium
19	Kyoto University Funai Tetsuro Auditorium & Funai Center
20	Amagasaki Shinkin Bank Kaikan
21	Nasunogahara Museum
22	Mie Prefectural College of Nursing
23	Sagawa Art Museum Tea Arbor (Raku Kichizaemon Kan)
24 Koatsuii Tamola Main Hall	
24	
26	Kinkakuii Tea Arbor (losokutei)
27	Daitokuii Oubai-in Temple (Jikvu-ken)
28	Sensoii Temple Hozo-mon Gate
29	Sensoii Temple Main Hall
30	Hosenji Temple
31	Ryukotokuji Temple
32	Kitano-Tenmangu Shrine Treasury
33	Miyajidake Shrine
34	Ikegami Honmonji Temple
35	Daichuji Temple
36	Ashitaka Shrine
Civil Engineering	
37	Haneda Airport D Runway Pier
38	Port and Airport Research Institute / Hazaki Research Pier
39	Chiba Prefecture / Naganuma Water Bridge
Monument	
40	Flame Holder at the Nagano Winter
41	Olympic Games Chigasaki Southern C Sculpture Koka

Overseas Projects

CHINA

The Bilbao Guggenheim, which opened in 1997 and was designed by the American architect Frank O Gehry, opened the eyes of many architects around the world to the wonders of titanium. Each country is finding a way to make use of this metal.

The French architect Paul Andreu selected our titanium coil as used in the Titanium Composite Material (TCM) produced by Mitsubishi Chemical Corporation.

Carlos Ott, the Canadian architect, elected to use TCM on this project.

Hangzhou Grand Theatre

Method – Panel (TCM manufactured by Mitsubishi Chemical Corporation.) Surface - Roll Dull (ND20) Thickness – 0.3mm Area - 10.000m² Architect - Carlos Ott Contractor - Longyuan Construction Group Fabricator – K.G.E. Date - 2003 China

Roofing

National Centre for Roofing **Performing Arts**

Method - Panel (TCM manufactured by Mitsubishi Chemical Corporation.) Surface - Roll Dull (ND20) Thickness – 0.3mm Area - 43,000m² Architect – Airport De Paris Contractor - Hong Kong Construction and Others JV Fabricator – K.G.E. Date - 2007 China

NIPPON STEEL CORPORATION

CHINA

Overseas Projects

CHINA

In China, the decision to make use of titanium with the National Centre for Performing Arts marked an opportunity for several other public buildings to choose titanium.

Hefei Lakeside International & **Convention Center**

Roofing

Method – Panel (TCM manufactured by Mitsubishi Chemical Corporation.) Surface - Roll Dull (ND20) Thickness – 0.3mm Area - 13,000m² Architect – Shanghai Architectural Research Institute Contractor - China Geological Engineering Group Company Fabricator – Zhejiang Southeast Space Frame Shares Engineering Date – 2011 China

The Taiwanese architect Lo Hsing Hua chose titanium. It was the first structure in Taiwan to make full use of titanium for its roof.

Taipei Arena

Method - Panel (TCM manufactured by Mitsubishi Chemical Corporation.) Surface - Roll Dull (ND20) Thickness – 0.3mm, 0.6mm, 1.5mm Area - 20,000m² Architect – Archasia Contractor – BES Engineering Corp. Fabricator – Great Construction Date - 2005 Taiwan

TAIWAN

Overseas Projects

SPAIN

The hotel makes use of the same shade of light-rich brown titanium pioneered by Frank O Gehry. Mr. Gehry has used our brown titanium in four projects to date.

Hotel Marques de Riscal

Method – Panel Surface – Roll Dull (SD3); Colors: Pink, Gold Thickness – 1.0mm $Area - 2,400m^2$ Architect – Frank O Gehry & Associates Contractor – Ferrovial Fabricator – Umaran Date - 2004 Spain

Titanium products have been used in Korea since 2000.

Saemangeum Exhibition Center

NIPPON STEEL CORPORATION

KOREA

In a Highly Corrosive Environment – TOKYO

Our peerless corrosion-resistant titanium is able to resist a highly corrosive coastal sea-air environment that can corrode stainless steel and copper.

Our titanium has been put to use in Tokyo Bay, a highly corrosive environment.

Photo by Satoshi Mishima, Nikkei Business Publications, Inc

Siding /

Tokyo Big Site

Wall Method – Panel Surface - Pickling Thickness – 0.6, 1.5 mm Area - 16,000m² Architect -AXS SATOW INC. Contractor – Hazama Corporation and Others JV Fabricator - Roof: Gantan Beauty Industry Co., Ltd. Panel: Yamaki industry Co., Ltd. Tajima Junzo Ltd. Date - 1995 Tokyo

Ballous Observation

architects

Wall

NIPPON STEEL CORPORATION

TOKYO

In a Highly Corrosive Environment SHIMANE

More titanium projects have been completed due to the severe corrosive environment alongside the Sea of Japan.

Shimane Prefectural Art Museum

Method – Flat Roof Surface – Picking and roll Dull (PD25NX) Thickness – 0.8, 1.2 mm Area - 10,000m² Architect – Kikutake Architects Contractor - Konoike Construction Co., Ltd and Others JV Fabricator - Gantan Beauty Industry Co., Ltd. Date - 1998 Shimane Roofing

Uchinada Town Office

Method – Stepped Roofing Surface - Roll Dull (ND20); Verdigris coloring

NIPPON STEEL CORPORATION

ISHIKAWA

In a Highly Corrosive Environment -AICHI

Titanium is used in the surface of the dome of the seafront-located Aquarium.

Aquarium Dome in Nagoya Port

Method – Dutch-lap Method Surface – Roll Dull (ND15) Thickness – 0.3mm Area – 2,700m² Architect – Daiken Sekkei Inc. Contractor – Kajima Corporation and Taisei Corporation and Others JV Fabricator – Dohkin Ltd. Date – 1991 Aichi

JR Hakodate station, located on the seafront, employs titanium for its sidings and walls

JR Hakodate Station

Method – Panel Surface – Roll Dull (ND20) Thickness – 1.0mm Area – 1,000m² Architect – Hokkaido Nikken Architects Contractor – Obayashi Corp. Fabricator – Sanko Repair / NS Metals Date – 2003 **Hokkaido**

NIPPON STEEL CORPORATION

HOKKAIDO

Architecture for Centuries

Contractor – Kajima – Hazama and Others JV,

Roofing

Taisei – Nishimatsu and Others JV

Fabricator – Sanko Metal Industries

Date - 2004

Fukuoka

FUKUOKA

The Kyushu National Museum and the new annexes of the Tokyo and Nara National Museums have been designed to last one hundred years.

Roofing Nara

NARA

Architecture for Centuries

ТОКҮО

Tokyo National Museum (Heisei Hall)

Method – Stepped Roofing Surface – Alumina Blasting (AD03) Roofing Thickness – 0.4mm $Area - 6,000m^2$ Architect - Yasui Architects and Engineers, Inc. Contractor – Konoike Construction Co., Ltd. And Others JV Fabricator – Kobe Steel, Ltd. / Sanko Metal Industrial Co., Ltd. / Gantan Beauty Industry Co., Ltd. Date - 1998 Tokyo

casion to use an alumina blast finish.

Tajima Junzo Ltd. Nihon Kentetsu Co., Ltd. Date - 1998 Tokyo

ТОКҮО

The policy here determined that a shiny surface was not to be used for the metropolitan city center, so this was the first oc-

Architecture for Centuries OITA

Roofing

Oita Sports Park Stadium

Method – Welded Panel Surface - Roll Dull (ND20) Thickness – 0.4mm Area – 32,000m² Architect – KT Group Contractor – KT Group Fabricator – Shinwa Industries Date – 2001 Oita

Kyoto University Funai Tetsuro Auditorium & Funai Center

Method – Welded Panel, Light Panel Surface - Roll Dull (ND20) Thickness – 0.4mm, 1.0mm Area - 4,000m² Architect – Nikken Architects Contractor – Shimizu Corp. Fabricator - Sanko Metal Industrial Co., Takada / Naito Metals Date - 2007 Kyoto

NIPPON STEEL CORPORATION

КҮОТО

Architecture for Centuries

HYOGO

Amagasaki Shinkin Bank Kaikan

Method – Step Roofing Surface – Alumina Blasting (AD09) Thickness – 0.4mm Area – 800m² Architect – Kosumi Architects Contractor – Kajima Construction Fabricator – Okubo Metal Plate / Chugiken Date – 2000 **Hyogo**

Nasunogahara Museum

Method – Step Roofing Surface – Alumina Blasting (AD09) Thickness – 0.4mm Area – 1,000m² Architect – Matsuda Hirata Contractor – Nishimatsu Construction Fabricator – Sanko Metal Industrial Co., Takada / Chugiken Date – 2003 **Tochigi**

NIPPON STEEL CORPORATION

TOCHIGI

Architecture for Centuries

M I E

Mie Prefectural College of Nursing

Method – Standing Seam Roofing Surface - Pickling and Roll Dull (PD25) Thickness – 0.4, 0.6, 1.5mm $Area - 2,400m^2$ Architect - Kume Sekkei Co., Ltd. Contractor – Maeda Corporation and Others JV Fabricator – Sanko Metal Industrial Co., Ltd. Date - 1997 Roofing Mie

Sagawa Art Museum Tea Arbor

NIPPON STEEL CORPORATION

SHIGA

New Age of Traditional Japanese Beauty

On the recommendation of Sukiya Kenkyusho, alumina-blasted titanium tiles have been developed to replace the conventional copper, which has a short-lifetime in an acid-rain environment. These titanium tiles, with the appearance of traditional Japanese roof-tiles, are currently being used in many shrines and Buddhist temples.

Method – Dutch-lap Method Surface – Alumina Blasting (AD03) Thickness – 0.3mm Area – 700m² Architect – Sukiya Kenkyusho Contractor – Sukiya Kenkyusho Fabricator – Sukiya Kenkyusho Date – 1997 **Kyoto**

Yakuouin Temple Tea Arbor

Method – Dutch-lap Method Surface – Alumina Blasting (AD03) Thickness – 0.3mm Area – 60m² Architect – Sukiya Kenkyusho Contractor – Sukiya Kenkyusho Fabricator – Sukiya Kenkyusho Date – 1992 **Tokyo**

NIPPON STEEL CORPORATION

ТОКҮО

New Age of Traditional Japanese Beauty – KYOTO

Kinkakuji Tea Arbor (Josokutei)

Method – Dutch-lap Method Surface – Alumina Blasting (AD03) Thickness – 0.3mm Area – 100m² Architect – Sukiya Kenkyusho Contractor – Sukiya Kenkyusho Fabricator – Sukiya Kenkyusho Date – 2003 **Kyoto**

Daitokuji Oubai-in Temple (Jikyu-ken)

Method – Dutch-lap Method Surface – Alumina Blasting (AD03); Brown/Coloring Thickness – 0.3mm Area – 155m² Architect – Yamamoto Kogyo Contractor – Yamamoto Kogyo Fabricator – Kubo Metal Plate Date – 2011 **Kyoto**

Roofing

NIPPON STEEL CORPORATION

КҮОТО

New Age of Traditional Japanese Beauty – TOKYO

Sensoji Temple Hozo-mon Gate

Method - Roof tiling, decorative roof tiles Surface - Alumina Blasting (AD03, AD06) Thickness – 0.3mm, 1.0mm Area - 1,080m² Architect - Shimizu Corp. Contractor - Shimizu Corp. Fabricator – Kaname Inc. Roofing Date - 2007 Tokyo

Otani Art Museum Foundation Award 2006 "Titanium roof tilling and decorative roof tiles"

NIPPON STEEL CORPORATION

ТОКҮО

New Age of Traditional Japanese Beauty -HYOGO

Verdigris coloring Office Metals

New Age of Traditional Japanese Beauty – KYOTO

A colored surface finish (green, blown) has been applied to alumina-blasted products.

Kitano-Tenmangu Shrine Treasury

Method – Dutch-lap Method Surface – Alumina Blasting (AD09); Verdigris coloring Thickness – 0.4mm Area – 1,000m² Architect – Kyoto Kenchiku Kenkyusho Contractor – Okutani Construction Co., Ltd. Fabricator – Ono Industry Date – 1998 Kyoto Roofing

Miyajidake Shrine

Method – Dutch-lap Method Surface – Roll Dull (ND20); Gold / Coloring Thickness – 0.3mm Area – 220m² Contractor – Kongo-Gumi Fabricator – Ono Industries, Inc. Date – 2010 Fukuoka

Roofing

NIPPON STEEL CORPORATION

FUKUOKA

New Age of Traditional Japanese Beauty TOKYO

Ikegami Honmonji Temple

Method – Dutch-lap Method Surface – Roll Dull (ND10) Thickness – 0.3mm Area – 400m² Contractor – Shimizu Kenkyusho Fabricator – Hidaka Shoji / Kubo Bankin Date – 2002 **Tokyo**

Roofing

Daichuji Temple

Method – Dutch-lap Method Surface – Alumina Blasting (AD03) Thickness – 0.3mm Area – 661m² Architect – Katobiken Contractor – Katobiken Fabricator – Doryo Bankin Date – 2006 **Shizuoka** Roofing

NIPPON STEEL CORPORATION

SHIZUOKA

New Age of Traditional Japanese Beauty FUKUOKA

Ashitaka Shrine

Method – Dutch-lap Method Surface - Alumina Blasting (AD09); Verdigris coloring Thickness – 0.3mm Area – 122m² Architect - Otsuka Construction Contractor - Otsuka Construction Fabricator – Ide Bankin Date - 2004 Fukuoka

Civil Engineering (construction/structural)

NS Cover Plate is a new technology from NIPPON STEEL ENGINEERING, which together with the TP method (titanium cover petrolatum lining method) from NIPPON STEEL ANTI-CORROSION CO., LTD. works to prevent bridges and piers from corrosion and contributes to their long working lives. This approach employs a cover coating of titanium with great corrosion resistance and durability.

Haneda Airport D Runway Pier

Method – NS Cover Plate Surface - Anti-Corrosion Cover Thickness – 0.35mm Area - 570,000m² Architect – Kajima Corporation and NIPPON STEEL ENGINEERING and Others JV Contractor - Kajima Corporation and NIPPON STEEL ENGINEERING and Others JV Fabricator - Kajima Corporation and NIPPON STEEL ENGINEERING and Others JV Date - 2011 Tokyo

Civil Engineering (construction/structural)

Port and Airport Research Institute / Hazaki Research Pier

Method – TP Method Surface – Anti-Corrosion Cover Thickness – 0.6mm Architect – NIPPON STEEL ANTI-CORROSION Fabricator – NIPPON STEEL ANTI-CORROSION Date – 1997 **Ibaraki**

Chiba Prefecture / Naganuma Water Bridge

Method – TP Method Surface – Anti-Corrosion Cover Thickness – 0.6mm Architect – Aoi Engineering Date – 2012 **Chiba**

NIPPON STEEL CORPORATION

Monument

Flame Holder at the Nagano Winter Olympic Games

Surface – Mirror Thickness – 2.0, 3.0mm Architect – Kiyoyuki Kikutake Sculptor of Interactive Scupitures Fabricator – Tig Date – 1998 Nagano

Sculpture Koka

Surface – Mirror Thickness – 3.0mm Architect – Minami Tada Contractor – Sakamoto Corporation and Others JV Date – 1994 **Hokkaido**

Chigasaki Southern C

Surface – Shot Blast Architect – Kotobuki Fabricator – Toho Tech Date – 2002 **Kanagawa**

NIPPON STEEL CORPORATION