

Die wichtigsten Titansorten

Bezeichnung	Festigkeit min. [N/mm²]	Streckgrenze 0.2% min. [N/mm²]	Eigenschaften	Anwendungen
Reintitan Grade 1	240	170	Gute Kaltverformbarkeit, tiefziehfähig	Wärmetauscher, Rohre, Fassadenbleche
Reintitan Grade 2	345	275	Mittlere Festigkeit	Maschinenbau
Reintitan Grade 4	550	483	Höchste Festigkeit für Reintitan, schwierige Kaltverformung	Zahnimplantate
Ti6Al4V	895	828	Hohe Festigkeit, gute Schmiedbarkeit	Luftfahrt, Maschinenbau
Ti6Al4V ELI	860	795	Tiefer Sauerstoffgehalt, gute Biokompatibilität	Medizintechnik, Tieftemperatur-Anwendungen
Ti6Al7Nb	900	800	Hohe Festigkeit, gute Biokompatibilität	Medizintechnik
BetaC ™	793 (ST) 1172 (STA)	759 (ST) 1103 (STA)	Gute Federeigenschaften, wärmebehandelbar	Federn, Brillengestelle
Ti 0.15Pd	345	275	Höhere Korrosionsbeständigkeit	Petrochemie
Ti3Al2.5V	620	483	Bessere Verformbarkeit als Ti6Al4V bei geringerer Festigkeit	Nahtlose Rohre für die Luftfahrt

Ausgabe: März 2020